
33-Auto삼삼오토
팀장 - 추창우

팀원 - 김태민

성현주

양지선

이종진

채상윤

현대오토에버 모빌리티 SW스쿨 웹/앱 3조

33-Auto

33-Auto

33-Auto

Contents

프로젝트 개요

팀 구성 및 역할

기획 및 설계

기술 스택 및 아키텍처

구현 및 시연

성과 및 차별점

발표 및 소감

01

02

03

04

05

06

07

01 프로젝트 개요 - 프로젝트 주제

프로세스 통합

구매, 생산, 창고, 판매, 인사 등 기업의 핵심 업무를 하나의 시스템으로 연

결합니다.

데이터 일관성 확보

일관된 기준정보(Master Data)를 기반으로 전 모듈이 동작하여 데이터의

중복과 오류를 제거합니다.

업무 효율화

특히 창고(WMS) 및 생산 현장의 프로세스를 표준화하고, 재주문점(ROP) 등

을 통해 자동화 기반을 마련하여 업무 효율을 극대화합니다.

실시간 가시성 확보

본사와 지점 간, 또는 각 부서 간의 재고 및 업무 현황을 실시간으로 파악하

여 정확한 의사결정을 지원합니다.

다중 지점(Multi-Branch) 운영 및 생산/물류(WMS) 관리를 위한 통합 ERP(전사적 자원 관리) 시스템 구축

주제 소개

프로젝트 목표

추창우 김태민 성현주 양지선 이종진 채상윤

02 팀 구성 및 역할

프론트엔드 개발

ERP대장

추하하하..

백엔드 개발

공장장

구매 관리

백엔드 개발

창고 관리

판매 관리

백엔드 개발

대리점장

기준 정보 관리

백엔드 개발

인증/인가

인사 관리

모바일 개발

Android

iOS

판매

Sales

구매

Purchasing 생산
Production

삼삼오토

ERP

저장
Inventory

기준정보

MDM

03 기획 및 설계 - 요구 사항 정의

모든 업무 프로세스의 데이터 기반
품목(Item), 자재명세서(BOM), 거래처(Partner), 작업장(WorkCenter) 등 시스템 전체가 공유하는 '데
이터 표준'을 정의하고 관리

MDM

모든 물적 자원의 흐름(입/출고)과 보관을 담당하는 핵심 현장 모듈이다.
입고(Receiving), 적치(Stocking), 재고(Inventory) 관리, 출고(Shipping) 및 재주문점(ROP)
설정을 포함해야 한다.

WMS

생산에 필요한 원자재를 조달하는 역할을 수행

구매

고객사의 '판매 주문'을 접수하고 관리한다.
접수된 주문은 '출고(WMS)' 프로세스 또는 '생산(Production)' 프로세스의 시작점이 되어야 한
다.

판매

판매 계획 또는 재고 상황에 따라 실제 제품을 만들어내는 모듈이다.
'주 생산 계획(MPS)' 수립, '자재 소요량(MRP)' 계산 ,'작업 지시(MES)' 발행, '공정 라우팅' 이행
및 실적 집계 기능을 정의한다.

생산

구매 (Purchasing)
구매요청 생성 및 구매발주
확정 등 자재나 서비스 조
달 과정 관리

ERP 코어
통합 관리 시스템

조직/멀티 브랜치
워크스페이스 및 지점 기반
사용자 및 조직 단위 업무 분
리

기준정보 (MDM)
아이템, BOM, 파트너, 지
점/부서/직급, 작업장, 공정
라우팅 등 핵심 데이터 관리

판매 (Sales)
판매주문 목록 조회 및 상
세 정보 관리 등 고객 주문
처리 관리

생산 (Production)

생산계획 수립부터 실제 생
산 실행까지의 전 과정 관
리

WMS (창고)
입고, 적치, 재고, 출고 처
리 등 창고 내 재고 및 물
류 흐름 관리

HRM (인사)
직원 프로필 및 상태, 급
여, 근태, 성과 평가 관리

03 기획 및 설계 - 구성요소 정의

03 기획 및 설계 - MDM의 구성요소

MDM 코어
기준정보 관리 시스템

아이템 (Item)
제품 및 자재에 대한 기본
정보

BOM (자재명세)
제품을 구성하는 부품 및
원자재 목록

파트너 (Partner)
공급업체 및 고객 정보

지점/부서/직급
조직의 지점, 사업장, 부서
및 직급 정보

작업장

(WorkCenter)
생산 활동이 이루어지는 물
리적 공간

공정라우팅 (Routing)
제품 생산을 위한 작업 순
서 및 공정 정보

MDM(Master Data Mangement)은 ERP 시스템 운영의 근간이 되는 핵심 데이터를 관리하며, 모든 모듈에서 참조 무결성을 유지하는 데 필수적입니다.
통합된 시스템 내에서 각 모듈은 이 데이터를 공유하고 상호 연동되어 효율적인 업무 처리를 지원합니다
저희는 이것을 저희 삼삼오토 ERP의 ‘유비쿼터스 언어’로 정의했습니다.

필요한 이유

1. 구매요청 생성

대리점에서 필요한 품목과 수량에
대한 구매 요청(PR) 생성

2. 구매발주 확정

생산 지점 선정 및 가격, 수량, 납
기 협의 후 구매 발주(PO) 확정

3. 입고 처리

품목 도착 시 수량, 품질 검수 및
로트 정보 기록 후 입고 처리

4. 적치

입고된 품목을 창고 내 지정된 로
케이션에 적치하며 효율적인 보관

5. 재고 반영

적치 완료 후 시스템에 재고 수량
반영하여 실시간 재고 현황 업데

이트

6. ROP 기반 보충

재고 수준이 재주문점(ROP)에 도
달하면 자동으로 재고 보충 필요

알림

03 기획 및 설계 - WMS 워크플로우

1 주 생산계획 수립(MPS)
판매 예측, 주문량, 재고 수준
등을 고려한 주 생산 계획
(MPS) 수립

2 자재 소요량 계산(MRP)
생산 계획과 BOM을 기반으
로 특정 제품 생산을 위한 자
재 소요량 계산

3 생산 지시(MES)
정의된 공정 라우팅에 따라 각
작업장에서 생산 활동 수행

4 실적 집계
각 공정 단계별로 생산량, 투
입 자재, 작업 시간 등 실적 데
이터 실시간 집계

5 창고로 출고
생산된 품목 창고 입고 처리
및 재고에 반영

반복 루프

7 / 10

03 기획 및 설계 - 생산 워크플로우

03 기획 및 설계 - 에자일 / MVP 기획 프로세스

핵심 도메인 식별

생산
Production

저장
Inventory

기준정보

MDM

“공통 데이터인 품목과 BOM을 제공한다”

“대리점앱 주문을 창고에 넣는다”

판매

Sales

“입고와 출고를 관리한다“ “기준정보로 MRP를 계산한다”

03 기획 및 설계 - 에자일 / MVP 기획 프로세스

디자인 초안

03 기획 및 설계 - 프로젝트 일정 및 개발 계획

03 기획 및 설계 - 프로젝트 일정 및 개발 계획

 스프린트 중 세미나 (주 1~2회)

03 기획 및 설계 - UI/UX 디자인 시안

04 기술 스택 및 아키텍처

04 기술 스택 및 아키텍처

05 구현 및 시연

시연

06 성과 및 차별점 - 협업

스프린트 1 스프린트 2

Jira

06 성과 및 차별점 - 협업

Slack

공장장의 인생이란07 개인 발표 - 김태민

배경
처음에는 DB 저장과 Kafka 전송을 한 트랜잭션에서 함께 처리하려 함

DB 트랜잭션과 Kafka 전송은 별개로 동작

문제
DB는 커밋됐지만 Kafka 전송이 실패할 수 있음

Kafka는 전송됐지만 DB는 롤백될 수 있음

해결책
DB 트랜잭션 안에서는 Kafka 대신 Outbox 테이블에 이벤트 기록

별도 프로세스가 Outbox 데이터를 Kafka로 안전하게 발행

Kafka Outbox 패턴

공장장의 인생이란07 개인 발표 - 김태민

Outbox 엔티티

팀이 구현한 차별화된 기능

사용자 효용 및 개선 포인트

팀원별 기여도 및 협업 방식

백엔드, 웹, 모바일 각 파트 별 핵심 공부 내용 코드와 함께 발표 (기

초 구현 단계는 AI 없이 구현할 수 있어야 합니다)

공장장의 인생이란

@Transactional
public Order createOrderBadWay(String productName, Integer quantity, String customerName) {
 try {
 Order order = new Order(productName, quantity, customerName);
 Order savedOrder = orderRepository.save(order);

 sendOrderCreatedEvent(savedOrder);

 return savedOrder;
 } catch (Exception e) {
 throw new RuntimeException("주문 생성에 실패했습니다", e);
 }
}

07 개인 발표 - 김태민

DB와 Kafka 이벤트 간 데이터 불일치

주문 생성 및 저장

즉시 카프카로 메시지 발송
발송 이후 예외가 발생하면

DB 롤백은 되지만 이미 카프카 메시지는 발송됨
데이터 불일치 발생

공장장의 인생이란

@Transactional
public Order createOrder(String productName, Integer quantity, String customerName) {
 Order order = orderRepository.save(new Order(productName, quantity, customerName));

 OrderCreatedEvent event = new OrderCreatedEvent(order.getId(), productName, quantity, customerName);
 String payload = toJson(event);

 // 👉 트랜잭션 안에서는 Outbox에만 기록
 outboxRepository.save(Outbox.builder()
 .aggregateType("ORDER")
 .aggregateId(order.getId())
 .eventType("OrderCreated")
 .payload(payload) // JSON 문자열
 .status(OutboxStatus.READY) // 기본 READY
 .occurredAt(OffsetDateTime.now())
 .build());

 return order;
}

07 개인 발표 - 김태민

DB에 주문 데이터 저장 + Outbox 테이블에 이벤트 기록
같은 트랜잭션이기 때문에 데이터와 이벤트의 일관성이 보장

공장장의 인생이란

@Component
@RequiredArgsConstructor
public class OrderOutboxPublisher {

 private final OutboxRepository outboxRepository;
 private final KafkaTemplate<String, String> kafkaTemplate;

 @Scheduled(fixedDelay = 500)
 public void publish() {
 List<Outbox> batch = outboxRepository.pickReadyBatch(100);
 for (Outbox o : batch) {
 try {
 markInProgress(o.getId());
 kafkaTemplate.send("order-events", String.valueOf(o.getAggregateId()), o.getPayload())
 .get(5, TimeUnit.SECONDS);
 markPublished(o.getId());
 } catch (Exception ex) {
 markFailedOrDead(o.getId(), ex);
 }
 }
 }
}

07 개인 발표 - 김태민

Outbox Publisher
일정 주기마다 Outbox 테이블에서 아직 발행되지 않은
이벤트를 읽어 Kafka에 메시지를 전송하고, 전송 결과에
따라 상태를 관리하는 퍼블리셔 클래스.

창고 관리자의 인생이란07 개인 발표 - 성현주

Rabbit: 내부 호출 시 트랜잭션이 제대로 작동하지 않을 것이다.

07 개인 발표 - 성현주 창고 관리자의 인생이란

내부 호출 함수의 @Transactional 문제

같은 함수를 내부 호출 / 외부 호출을 따로 둬야 한다?

창고 관리자의 인생이란07 개인 발표 - 성현주

창고 관리자의 인생이란07 개인 발표 - 성현주

창고 관리자의 인생이란07 개인 발표 - 성현주

AOP - Aspect Orient Programming

Aspect: 여러 클래스에 적용되는 관심사의 모듈화

Proxy: Aspect를 구현하기 위한 객체

창고 관리자의 인생이란07 개인 발표 - 성현주

창고 관리자의 인생이란07 개인 발표 - 성현주

07 개인 발표 - 성현주 창고 관리자의 인생이란

내부 호출 함수의 @Transactional은 무시될 뿐 에러가 아니다

같은 함수를 내부 호출 / 외부 호출을 따로 둬야 한다? 아니다

p.s AI의 말은 한번에 믿지 말자

지점장의 인생이란07 개인 발표 - 양지선

배경
엔티티 간 연관관계 없음 → categoryId, groupId, partId만 보유
“카테고리 → 그룹 → 부품” 구조 + 재고/출고 수량 표시 계층형 응답

문제
JPA 기본 메서드로는 복잡한 다중 조인 처리 불가
문자열 JPQL은 오류 발생 가능성이 높음

해결책
SQL 조인을 명시적 코드 형태로 표현 가능
IDE 자동완성 + 컴파일 타임 검증으로 안정성 확보

QueryDSL

지점장의 인생이란07 개인 발표 - 양지선

문자열 기반이라 컬럼 변경 시 오류 위험

조인 구조 복잡 → 유지보수 어려움

동적 조건(재고, 상태 등) 추가 어려움

엔티티 간 연관관계 없으면 JOIN 불가능

지점장의 인생이란07 개인 발표 - 양지선

엔티티 기반으로 생성되는 QPart, QCategory 등의 Q클래스가 SQL 테이블/컬럼 역할을 대신한다

타입 안전성: 필드명 변경 시 컴파일 단계에서 오류를 감지해 안정적인 개발 환경 구축

IDE 지원: 메서드 체인 방식으로 가독성 및 생산성 향상

지점장의 인생이란07 개인 발표 - 양지선

DTO Projection을 통한 성능 최적화
select(new QDTO(...)) 구문을 사용하여 JPA 엔티티 대신
필요한 컬럼만 DTO로 조회하여 불필요한 연관관계 제거

연관관계 없는 테이블 간의 다중 JOIN 구현
join().on()을 사용하여 엔티티 매핑과 관계없이 SQL처럼
명시적으로 4개 테이블을 JOIN

지점장의 인생이란07 개인 발표 - 양지선

복합 조건 JOIN
stockId.eq(...).and(...)와 같이 두 가지 이상의 조건으로
LEFT JOIN을 처리하여 재고 조회 문제를 해결

동적 WHERE 절
keyword != null ? : null과 같이 자바 코드로 검색 조건
의 유무를 판단하여 동적 쿼리 처리 가능

지점장의 인생이란07 개인 발표 - 양지선

Java Stream을 활용한 계층 구조 변환

QueryDSL로 얻은 Flat DTO 결과를 카테고리 → 그룹 → 부품 형태의 Nested Structure로 최종 변환

Java Stream의 Collectors.groupingBy()를 사용하여 메모리 상에서 효율적으로 데이터를 가공

인사 팀장의 인생이란07 개인 발표 - 이종진

“ MSA, 다시 선을 긋다. ”

MSA 구조 속 책임과 경계를 재정의한 리팩터링 경험

인사 팀장의 인생이란07 개인 발표 - 이종진

초기 시스템은 MSA 구조로 구성된 ERP 플랫폼
기능 별로 독립된 서비스로 분리

관리하는 조직 별 직원 정보를 별도의 DB로 관리

회원가입 · 로그인 시 어느 조직 직원으로 인증할지 판단 필요

인증·인가를 담당하는 Auth, 인사 관리를 담당하는 User

기능 별로 독립된 서비스로 분리

인사 팀장의 인생이란

당시 상황

07 개인 발표 - 이종진

Gateway 통합 인증/인가가 아닌 각 서비스별 API 인증/인가
API 호출 시마다 인증자의 소속 조회 필요 → 비용 발생

인사 팀장의 인생이란

설계 목표

07 개인 발표 - 이종진

CRUD 가능 권한과 별도로,
토큰 내 정보에 소속 조직 별로 접근 권한을 추가해서 인가하는 구조적 설계로 개선

인사 팀장의 인생이란

설계 목표

07 개인 발표 - 이종진

Role: CRUD 권한 (USER, ADMIN)
Workspace: 소속된 조직 접근 권한

최상위 권한

조직 권한

최하위 권한

Role.ADMIN

Workspace

Role.USER

PRODUCTION(생산 관리),
INVETORY(재고 관리),
HR (인사 관리),
...

인증 객체에 Role과 Workspace를 함께 등록 → 인가 검증 시 CRUD 권한과 조직 접근 권한을 동시에 비교

인사 팀장의 인생이란07 개인 발표 - 이종진

문제 발생

초기 설계 시 소속 데이터는 인가를 맡은 Auth보다는
직원 정보 책임의 User쪽 책임으로 설계
→ 책임의 경계를 다르게 설정

MSA의 핵심 특징, 단일 진실 공급원
 → Auth는 인증과 인가에만 집중, User는 사용자의 소속을 명확히 관리

인사 팀장의 인생이란07 개인 발표 - 이종진

해결 과정

모듈 내 응집도가 높은 MSA의 특성상 DB의 컬럼 하나를 이전하는데
내부 복잡도 및 책임 분리 검증에 상당한 노력과 시간 소요
→ 유지보수 비용 증가

인증/인가 정보를 다루는 Auth가 소속 접근 권한 직접 소유
 → Auth로의 이관 작업 필요

인사 팀장의 인생이란07 개인 발표 - 이종진

Auth 서버 디렉토리 User 서버 디렉토리

인사 팀장의 인생이란07 개인 발표 - 이종진

Auth 서버 디렉토리 User 서버 디렉토리

07 개인 발표 - 이종진 인사 팀장의 인생이란

결과 분석

MSA에서 중요한 건 분리 그 자체가 아니라
어떻게 명확하게 분리할지에 대한 책임의 일관성이 중요

상당히 변경된 내부 구조와 비즈니스 로직, 클라이언트 및 서비스 간 외부 API는 그대로
→ 서비스 내부 응집도가 높고, 외부 결합도가 낮다는 MSA의 핵심 특징

클린 아키텍처07 개인 발표 - 채상윤

동시 개발

배경
서로 다른 언어(Kotlin / Swift)로 작성되어 코드 재사용 불가

하지만 비즈니스 로직은 동일해야 함

문제
기능이 늘어나면서 플랫폼별로 로직 불일치 발생 위험

UI 프레임워크나 라이브러리 교체 시 비즈니스 코드까지 수정 필요

해결책
두 플랫폼이 같은 도메인 구조와 규칙을 공유하도록 설계

클린 아키텍처 도입

클린 아키텍처

계층 알 수 있는 계층 알 수 없는 계층

Domain 없음 UI, Data

Data Domain UI

UI Domain Data

07 개인 발표 - 채상윤

비즈니스 로직(도메인)을 중심에 두고, 외부 요
소(UI, DB, 네트워크)에 대한 의존성을 안쪽(도
메인)으로만 흐르게 하는 설계 구조

클린 아키텍처?

핵심 비즈니스 로직
플랫폼이나 프레임워크에

의존하지 않음

Domain Layer

실제 데이터 처리
외부 세계(DB, API, 네트워크

등)와 연결되는 계층

Data Layer

사용자 인터페이스
사용자의 입력과 화면 상태를 관리하

는 계층

UI(Presentation) Layer

클린 아키텍처

data class VendorList(
 val items: List<Vendor>,
 val totalCount: Int = items.size,
 val isEmpty: Boolean = items.isEmpty()
)

interface AuthRepository {
 suspend fun signUp(...): Result<User>
 suspend fun signIn(email: String, password: String): Result<User>
 suspend fun signOut(): Result<Unit>
 // ...
}

class LoginUseCase @Inject constructor(
 private val repository: AuthRepository
) {
 suspend operator fun invoke(email: String, password: String): Result<User> = repository.signIn(email, password)
}

07 개인 발표 - 채상윤

Domain Model - 도메인에서 다루는 실제 엔티티

Repository Interface - 데이터 접근 방법의 약속을 정의

UseCase - 하나의 기능 단위 로직을 담당

핵심 비즈니스 로직
플랫폼이나 프레임워크에

의존하지 않음

Domain Layer

외부 구현을 몰라도 동작할 수 있는

앱의 중심 계층

클린 아키텍처

struct VendorList: Equatable {
 let items: [Vendor]
 var totalCount: Int { items.count }
 var isEmpty: Bool { items.isEmpty }
 static func empty() -> VendorList { VendorList(items: []) }
}

protocol AuthRepository {
 func signUp(...) async throws -> User
 func signIn(email: String, password: String) async throws -> User
 func signOut() async throws
 // ...
}

class LoginUseCase {
 private let repository: AuthRepository

 init(repository: AuthRepository) {
 self.repository = repository
 }

 func execute(email: String, password: String) async throws -> User {
 return try await repository.signIn(email: email, password: password)
 }
}

07 개인 발표 - 채상윤

핵심 비즈니스 로직
플랫폼이나 프레임워크에

의존하지 않음

Domain Layer

클린 아키텍처07 개인 발표 - 채상윤

interface AuthApi {
 @POST("auth/login")
 suspend fun login(@Body body: LoginRequestDto): ApiResponse<LoginResponseDto>
 // ...
}

API / DTO - 외부 데이터 형식을 다룸

fun LoginResponseDto.toModel(): User = User(
 userId = userId,
 accessToken = accessToken,
 refreshToken = refreshToken,
 // ...
)

Mappers - 외부 데이터(DTO)와 도메인 모델 변환 계층 → 덕분에 계층간 의존성 분리

class AuthRepositoryImpl @Inject constructor(
 private val api: AuthApi,
 private val preferences: AuthPreferences
) : AuthRepository {
 override suspend fun signIn(email: String, password: String): Result<User> {
 return runCatching {
 val loginDto = api.login(LoginRequestDto(...))
 val loginUser = loginDto.data.toModel()
 preferences.saveUser(loginUser)
 loginUser
 }
 }
}

RepositoryImpl - 도메인의 Repository 인터페이스 구현체로 서버,DB 연결

실제 데이터 처리
외부 세계(DB, API, 네트워크

등)와 연결되는 계층

Data Layer

클린 아키텍처07 개인 발표 - 채상윤

data class LoginUiState(
 val email: String = "",
 val password: String = "",
 val emailError: String? = null,
 val passwordError: String? = null,
 val loading: Boolean = false,
 val success: Boolean = false
) {
 val isValid: Boolean
 get() = email.isNotBlank() && password.isNotBlank() && ...
}

UiState - 화면의 상태를 데이터 형태로 관리

sealed interface LoginUiEvent {
 data class EmailChanged(val email: String) : LoginUiEvent
 data class PasswordChanged(val password: String) : LoginUiEvent
 data object Submit: LoginUiEvent
}

UiEvent - 사용자의 액션 표현

사용자 인터페이스
사용자의 입력과 화면 상태를 관리하

는 계층

UI(Presentation) Layer

클린 아키텍처07 개인 발표 - 채상윤

@HiltViewModel
class LoginViewModel @Inject constructor(
 private val loginUseCase: LoginUseCase,
 private val getProfileUseCase: GetProfileUseCase
) : ViewModel() {
 // UiState 관리
 private val _uiState = MutableStateFlow(LoginUiState())
 val uiState: StateFlow<LoginUiState> = _uiState

 // UiEvent 처리
 fun onEvent(e: LoginUiEvent) = when (e) {
 is LoginUiEvent.EmailChanged -> {
 _uiState.value = _uiState.value.copy(email = e.email)
 validateEmail()
 }
 is LoginUiEvent.PasswordChanged -> {
 _uiState.value = _uiState.value.copy(password = e.password)
 validatePassword()
 }
 is LoginUiEvent.Submit -> submit()
 }

 private fun submit() = viewModelScope.launch {
 if (!_uiState.value.isValid) return@launch

 _uiState.update { it.copy(loading = true) }
 loginUseCase(_uiState.value.email, _uiState.value.password)
 .onSuccess { ... }
 .onFailure { ... }
 }
}

ViewModel - UI의 상태를 관리, 도메인 유스케이스 호출해서 데이터 다룸

사용자 인터페이스
사용자의 입력과 화면 상태를 관리하

는 계층

UI(Presentation) Layer

클린 아키텍처07 개인 발표 - 채상윤

@Composable
fun LoginScreen(
 viewModel: LoginViewModel = hiltViewModel()
) {
 // UiState 구독
 val uiState by viewModel.uiState.collectAsStateWithLifecycle()

 Column {
 // UiEvent 발생: EmailChanged
 CommonTextField(
 value = uiState.email,
 onValueChange = { viewModel.onEvent(LoginUiEvent.EmailChanged(it)) },
 isError = uiState.emailError != null,
 errorMessage = uiState.emailError
)

 // UiEvent 발생: PasswordChanged
 CommonTextField(
 value = uiState.password,
 onValueChange = { viewModel.onEvent(LoginUiEvent.PasswordChanged(it)) },
 isPassword = true,
 isError = uiState.passwordError != null,
 errorMessage = uiState.passwordError
)
 // ...
 }
}

View - 오직 UI를 그리고 상태만 관찰

사용자 인터페이스
사용자의 입력과 화면 상태를 관리하

는 계층

UI(Presentation) Layer

클린 아키텍처07 개인 발표 - 채상윤

동시 개발

결과

두 플랫폼 간 비즈니스 로직의 일관성 확보

유지보수와 확장성 향상

개발 시간 단축

배경

07 개인 발표 - 추창우 FSD (Featured-Slice Design)

페이지가 많아지면서 전통적인 방식(component,
hook, page)으로 분리하는 기능분할은 낮은 응집도로
인해 확장이 어려워짐

과제

07 개인 발표 - 추창우 FSD (Featured-Slice Design)

백엔드에서 진행하는 도메인 단위의 기능 개발에 적합한 아키텍처 구조를 선택

백엔드는 현재 모듈별로 분리된 엔드포인트들 즉, 백엔드에서도 공장, 창고가 아닌 공장을 관리,
창고를 관리 같은 비즈니스 도메인 단위로 나누어져있다.

액션

07 개인 발표 - 추창우 FSD (Feature-Slice Design)

아키텍처 비교후 학습

1. vs. 타입 기반 구조 (Folder-by-Type)

2. vs. 아토믹 디자인 (Atomic Design)

3. vs. 도메인 주도 개발(DDD)

src/components, src/hooks, src/pages, src/api 등 기술 스택 유형별로 폴더를 구성
'BOM 생성' 기능 하나를 수정하기 위해 components, hooks, api 폴더를 모두 수정

src/atoms, src/molecules, src/organisms, src/templates, src/pages로 UI 컴포넌트를 분리
UI 컴포넌트의 재사용성과 디자인 시스템 구축에만 초점을 맞춘다. 비즈니스 로직, API 호출, 상태 관리

의 위치에 대해서는 명확히 규정하지 않음

너무 추상적인 명세로 인해 초기 학습 난이도가 너무 높다고 판단

07 개인 발표 - 추창우 FSD (Feature-Slice Design)

07 개인 발표 - 추창우 FSD (Feature-Slice Design)

당장 나누어서 구현하기보다 Pages에서 3번 이상 겹치는 기능이 있다면 리팩토링을 하기로 결정

Layers의 특징 : app 에서부터 shared로 내려가는 계층 구조. 위로는 import하는 것을 금지

slice의 특징 : slice 간의 import는 불가능

segment는 기술적 목적에 따라 분류

07 개인 발표 - 추창우 FSD (Feature-Slice Design)

모든 페이지에서 사용

엔티티와 결합해 행동이 들어감

입고관리 페이지

07 개인 발표 - 추창우 FSD (Feature-Slice Design)

높은 신뢰도가 요구되는 share슬라이스의 기본 ui는 TDD로 개
발

07 개인 발표 - 추창우 FSD (Feature-Slice Design)

결과

아직도 진짜로 FSD를 활용하는지는 모르겠다
FSD의 Slice와 Segment 의존성 규칙이 개발자의 '사고방식의 흐름'을 자연스럽게 올바

른 방향으로 이끄는 것을 경험

07 발표 및 소감

프로젝트 진행 중 배운 점프로젝트 진행 중 배운 점

실제 개발하고자 했던 MVP 기능 및 추가 기능 모두 구현하였습니다.

단순히 각자 맡은 부분만 작업하는 것이 아니라, 피그마를 활용해 와이어프

레임과 실제 디자인을 공유하면서 각 OS별 팀원들의 피드백을 빠르게 반영

했고, 덕분에 의도와 결과물이 일치하는 경험을 할 수 있었습니다.

매일 아침 Scrum 회의를 통해 팀원 간의 업무 진행 상황을 공유 및 발생한

이슈를 신속하게 해결할 수 있었습니다.

개발 중간마다 UI에 대한 팀 내·외부의 피드백을 받아 적극 반영했고, 그 결

과 프로젝트 후반으로 갈수록 화면의 완성도와 사용자 편의성이 향상되었습

니다.

각 서비스가 자체 데이터베이스를 가지고 이벤트로 정보를 주고받는 과정에

서, 서로의 책임 범위를 명확히 정하는 것이 시스템 안정성과 유지보수에 큰

영향을 준다는 것을 배웠습니다.

실제 개발하고자 했던 MVP 기능 및 추가 기능 모두 구현하였습니다.

단순히 각자 맡은 부분만 작업하는 것이 아니라, 피그마를 활용해 와이어프

레임과 실제 디자인을 공유하면서 각 OS별 팀원들의 피드백을 빠르게 반영

했고, 덕분에 의도와 결과물이 일치하는 경험을 할 수 있었습니다.

매일 아침 Scrum 회의를 통해 팀원 간의 업무 진행 상황을 공유 및 발생한

이슈를 신속하게 해결할 수 있었습니다.

개발 중간마다 UI에 대한 팀 내·외부의 피드백을 받아 적극 반영했고, 그 결

과 프로젝트 후반으로 갈수록 화면의 완성도와 사용자 편의성이 향상되었습

니다.

각 서비스가 자체 데이터베이스를 가지고 이벤트로 정보를 주고받는 과정에

서, 서로의 책임 범위를 명확히 정하는 것이 시스템 안정성과 유지보수에 큰

영향을 준다는 것을 배웠습니다.

느낀 점 및 향후 개선 아이디어느낀 점 및 향후 개선 아이디어

예상보다 구현 난이도가 높거나, 기능 세분화가 부족하여 개발 일정 산정이

부정확했고 개발 마감 시점에 대한 부담이 컸습니다.

프로젝트 초기 단계에서 API 명세 등의 프로젝트 구조를 모호하게 잡아 실

질적인 개발이 지연되었습니다.

예상치 못한 응답값(예: null, 빈 배열 등)에 대한 방어 로직이 부족해, 개발

중 일부 페이지에서 발생한 오류의 원인을 파악하는 데 시간이 소요되었습

니다.

서비스 간 연결로 인해 한 변화가 여러 곳에 영향을 주는 경험을 통해, 코드

보다 이벤트 흐름과 데이터 책임을 명확히 정하는 것이 더 중요함을 깨달았

습니다.

예상보다 구현 난이도가 높거나, 기능 세분화가 부족하여 개발 일정 산정이

부정확했고 개발 마감 시점에 대한 부담이 컸습니다.

프로젝트 초기 단계에서 API 명세 등의 프로젝트 구조를 모호하게 잡아 실

질적인 개발이 지연되었습니다.

예상치 못한 응답값(예: null, 빈 배열 등)에 대한 방어 로직이 부족해, 개발

중 일부 페이지에서 발생한 오류의 원인을 파악하는 데 시간이 소요되었습

니다.

서비스 간 연결로 인해 한 변화가 여러 곳에 영향을 주는 경험을 통해, 코드

보다 이벤트 흐름과 데이터 책임을 명확히 정하는 것이 더 중요함을 깨달았

습니다.

감사합니다

삼삼오토

